دانلود تحقیق درمورد تعاريف و ويژگيهاي بنيادي توابع مثلثاتي
با دانلود تحقیق در مورد تعاريف و ويژگيهاي بنيادي توابع مثلثاتي در خدمت شما عزیزان هستیم.این تحقیق تعاريف و ويژگيهاي بنيادي توابع مثلثاتي را با فرمت word و قابل ویرایش و با قیمت بسیار مناسب برای شما قرار دادیم.جهت دانلود تحقیق تعاريف و ويژگيهاي بنيادي توابع مثلثاتي ادامه مطالب را بخوانید.
نام فایل:تحقیق در مورد
فرمت فایل:word و قابل ویرایش
تعداد صفحات فایل:27 صفحه
قسمتی از فایل:
دانشآموزان اولين چيزي را كه در مطالعه توابع مثلثاتي بايد بخاطر داشته باشند اين است كه شناسههاي (متغيرهاي) اين توابع عبارت از اعداد حقيقي هستند. بررسي عباراتي نظير sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهي اوقات به نظر دانشجويان دورههاي پيشدانگاهي مشكل ميرسد.
با ملاحظه توابع كماني مفهوم تابع مثلثاتي نيز تعميم داده ميشود. در اين بررسي دانشآموزان با كمانيهايي مواجه خواهند شد كه اندازه آنها ممكن است بر حسب هر عددي از درجات هم منفي و هم مثبت بيان شود. مرحله اساسي بعدي عبارت از اين است كه اندازه درجه (اندازه شصت قسمتي) به اندازه راديان كه اندازهاي معموليتر است تبديل ميشود. در حقيقت تقسيم يك دور دايره به 360 قسمت (درجه) يك روش سنتي است. اندازه زاويهها برحسب راديان بر اندازه طول كمانهاي دايره وابسته است. در اينجا واحد اندازهگيري يك راديان است كه عبارت از اندازه يك زاويه مركزي است. اين زاويه به كماني نگاه ميكند كه طول آن برابر شعاع همان دايره است. بدين ترتيب اندازه يك زاويه بر حسب راديان عبارت از نسبت طول كمان مقابل به زاويه بر شعاع دايرهاي است كه زاويه مطروحه در آن يك زاويه مركزي است. اندازه زاويه برحسب راديان را اندازه دوار زاويه نيز ميگويند. از آنجا كه محيط دايرهاي به شعاع واحد برابر است از اينرو طول كمان برابر راديان خواهد بود. در نتيجه برابر راديان خواهد شد.